

edgeRv4 with expanded functionality and improved support for small counts and larger datasets

Lizhong Chen

Smyth Lab, Bioinformatics Division WEHI

September 17, 2025

Quasi-likelihood pipeline

Mean-variance relationship

$$\mathrm{var}[\mathit{y_{gi}}] = \sigma_{\mathit{g}}^2 \mu_{\mathit{gi}} + \psi_{\mathit{g}} \mu_{\mathit{gi}}$$

- Quasi-dispersion σ_{σ}^2 , accounting for technical overdispersion
- Negative binomial dispersion ψ_{σ} , accounting for biological overdispersion
- **E**stimation of ψ_{φ} is global, and we estimate $\hat{\psi}$ for all genes using highly expressed genes

Mortein Anida Research 2025 53 phottos Advance access subfination date: 22 January 2025

edgeR v4: powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets

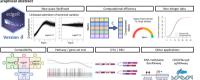
Yunshun Chen 01.2, Lizhong Chen 01.3, Aaron T.L. Lun 04, Pedro L. Baldoni 01.3, Gordon K Smyth 91.5.

Bioinformatics Division, WEHI, Parkville, VIC 3052, Australia ²ACRF Cancer Biology and Stem Cells Division, WEHI, Parkville, VIC 3052, Australia

Phenartmant of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia *Computational Sciences, Generatech Inc. 1 DNA Way, South San Francisco, CA 94090, United States School of Mathematics and Statistics. The University of Melbourne, Parkville, VIC 3010, Australia "In whom correspondence should be addressed Tab all 3 9345 2555 Fav. all 3 9347 2555 Freak' smultipashi adu su

edgeR is an R/Bioconductor software package for differential analyses of sequencing data in the form of read counts for genes or genomic linear models to analyze complex experimental designs, edgeR implements empirical Bayes moderation methods to allow reliable inference when the number of replicates is small. This article announces edgeR version 4, which includes new developments across a range of application of the quasi-likelihood pipeline that improves accuracy for small counts. The revised package has new functionality for differential methylation analysis, differential transcript expression, differential transcript and exon usage, testing relative to a fold-channe threshold and certivals analysis. This article reviews the statistical framework and computational implementation of edgeR, briefly summarizing all the existing features and

Graphical abstract



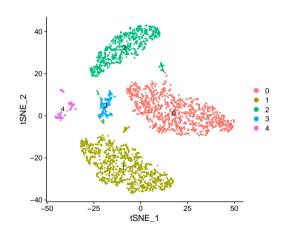
Next generation sequencing (NGS) has revolutionized biomedical research over the past 15-20 years, RNA-seq has become the standard technology for profiling gene and

transcript expression [1, 2], while other technologies such as ChIP-seq, ATAC-seq, CUT&Tag, bisulfite sequencing (BS-seq) and Hi-C allow high-resolution exploration of the molecular mechanisms by which expression is regulated [3].

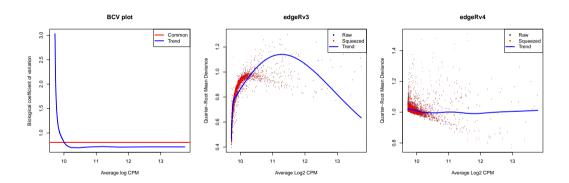
Received: January 17, 2024. Revised: November 22, 2024. Editorial Decision: January 6, 2025. Accepted: January 8, 2025 © The Authoris) 2025. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Onen Access article distributed under the terms of the Country Common Attribution License (https://creativecommons.org/licenses/be/4.0/). which permits unrestricted rouse, distribution, and reproduction in any medium, provided the original work is properly cited.

Application to single-cell RNA-seq data

```
# Size
> dim(v)
[1] 9996 3302
> # Seurat clusters
> cls <- so@meta.data$seurat clusters
> des <- model.matrix(~ 0 + cls)</pre>
> # edgeRv3 pipeline
> system.time(v1 <- estimateDisp(v, des, tagwise = FALSE))</pre>
   user system elapsed
 302.15 3.16 305.91
> system.time(fit1 <- glmQLFit(y1, des, legacy = TRUE))</pre>
  user system elapsed
 19.36
           0.32 19.74
> # edgeRv4 pipeline
> system.time(fit0 <- glmQLFit(y, des, legacy = FALSE))</pre>
  user system elapsed
 76.78
           0.60 77.56
```



Adjusted deviance statistics



Highly variable gene (HVG) selection

- Null hypothesis: a single population assumption
- Under null hypothesis, the variance is

$$\mathrm{var}[\mathit{y_{gi}}] = \sigma_g^2 \mu_{gi} + \psi_g \mu_{gi}^2$$

- \blacksquare Assume $\sigma_{\rm g}^2=\sigma^2$ are the same for all genes
- \blacksquare Biological variation is measured by $\hat{\psi}_{\mathbf{g}}$
- \blacksquare HVGs are those genes with large $\hat{\psi}_{\mathbf{g}}$

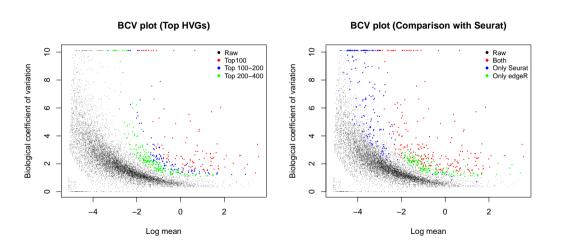
$$\hat{\psi}_{\mathsf{g}} > \hat{\psi}$$

- The HVGs can be classified into two categories
- lacksquare Null hypothesis is accepted but $\hat{\psi}_{\mathbf{g}}$ is large
- Null hypothesis is rejected that μ_{gi} varies and results in large $\hat{\psi}_{g}$
- lacksquare edgeRv4 pipeline does not estimate $\hat{\psi}_{\mathbf{g}}$
- lacksquare edgeRv4 pipeline does estimate $\hat{\sigma}_{\it g}^2$ and $\hat{\sigma}^2$
- edgeRv4 performs goodness of fit test

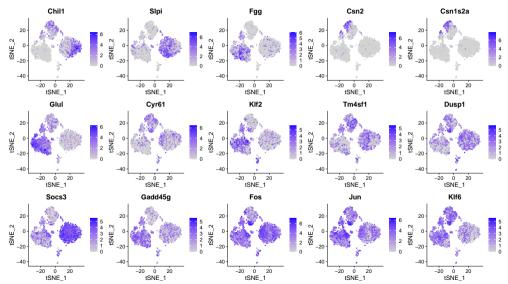
$$\hat{\sigma}_{\mathsf{g}}^2 > \hat{\sigma}^2 pprox \hat{\psi}_{\mathsf{g}} > \hat{\psi}$$

by adjusted deviance statistics

Results of selected HVGs



Examples of selected HVGs



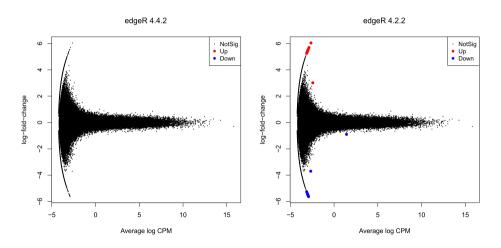
7/1!

Prior estimation of empirical Bayes process

- Suppose we have $\hat{\sigma}_g^2 \sim s_0^2 \times F_{d_0,d_g}$ The problem is to estimate s_0^2 , d_0 .
- Smyth 2004) Moment estimators on s_0^2 and d_0 .
- Sartor et al., 2006) Prior trend on s_0^2 using splines.
- Phipson et al., 2016) Robust estimators on s_0^2 and d_0 .

- Two major challenges for edgeRv4 QL method using adjusted deviance statistics
- $d_{g,adj}$ is not a constant, and may vary a lot.
- \blacksquare Many $d_{g,adj}$ can be small.
- A two-steps method is proposed to improve empirical Bayes hyperparameter estimation
- It is implemented in fitDistUnequalDF1() in limma

Prior estimation of empirical Bayes process



^{*} Null simulation for DTE (only filter zeros), edgeR 4.2 fails to control FDR (df.prior = Inf)

Marker gene selection

- Marker genes are used to identify clusters with a positive logFC
- Cluster specific is preferred, one gene one cluster
- It can be a marker gene set, and the combination specifies cluster
- Assume clusters are well defined, edgeR performs one vs the average of others test
- For one sample, edgeR can perform on the single-cell level
- For multiple samples, pseudo-bulk approach is recommended

Marker gene selection

```
> # contrast matrix
> contr.matrix <- matrix(-1/4.5.5)</pre>
> diag(contr.matrix) <- 1</pre>
> contr.matrix
      [.1] [.2] [.3] [.4] [.5]
[1.] 1.00 -0.25 -0.25 -0.25 -0.25
[2,] -0.25 1.00 -0.25 -0.25 -0.25
[3,] -0.25 -0.25 1.00 -0.25 -0.25
[4.] -0.25 -0.25 -0.25 1.00 -0.25
[5.] -0.25 -0.25 -0.25 -0.25 1.00
> # Test for cluster 2 (LP cells)
> qlf <- glmQLFTest(fit0, contrast = contr.matrix[,3])</pre>
> topTags(qlf)[,-(1:4)]
Coefficient: -0.25*cls0 -0.25*cls1 1*cls2 -0.25*cls3 -0.25*cls4
                 logCPM
                                         PValue
Spp1 5.995375 13.90512 3207.176
                                  0.000000e+00
                                                 0.000000e+00
                                  0.000000e \pm 00
                                                 0.000000e+00
      5 194536 11 68842 2828 526
                                  0.0000000+00
                                                 0.0000000+00
Plet1 4.371423 12.03224 3521.563
                                  0.000000e+00
                                                 0.000000e+00
      4.014644 10.90419 2389.327
                                  0.000000e \pm 00
                                                 0.0000000e+00
     3 531909 11 76725 2493 848
                                  0.000000e+00
                                                 0.0000000+00
Mfge8 3.517283 11.75730 2775.851
                                  0.000000e+00
                                                 0.000000e+00
Cst3 3.089129 11.46859 2020.506
                                  0.000000e+00
                                                 0.000000e+00
Mgst1 2.565137 11.32096 1751.716
                                  0.000000e+00
                                                0 0000000+00
      2.926397 11.26094 1741.443 7.674257e-318 7.671188e-315
```

- p-values are not reliable because of the inter-correlation among cells
- Rank of genes is reasonable so we can choose top DE genes as potential marker genes
- Top DE genes may not be cluster specific
- For logFC cutoff, a treat-style method is recommended

differential splicing (differential transcript usage)

blokkuir prepriet doi: https://doi.org/10.1101/2025.04.07.647.656/, this version posted August 28, 2025. The copyright holder for this prepriet (which was not certified by peer review) in the authoritunder, who has granted blokkuir a Scanse to display the prepriet in peoperaty. It is made audible under 2017 of 10 the moderation is constituted.

Dividing out quantification uncertainty enables assessment of differential transcript usage with limms and edgeR

Pedro L. Baldoni^{1,2,†}, Lizhong Chen^{1,2,†}, Mengbo Li^{1,2}, Yunshun Chen^{1,2,3}, and Gordon K. Smyth^{1,2,*}

¹Bioinformatics and Computational Biology Division, WEHI, Parkville, VIC 3052, Australia, ²Department of Medical Biology, The University of Melitourne, Parkville, VIC 3010, Australia, ³ACRF Cancer Biology and Stem Cells Division, WEHI (Parkville, VIC 3022, Australia).

To whom correspondence should be addressed. Tel: +61 3 9345 2555; Fax: +61 3 9347 0852; Email: smyth@wehi.edu.au

Abstract

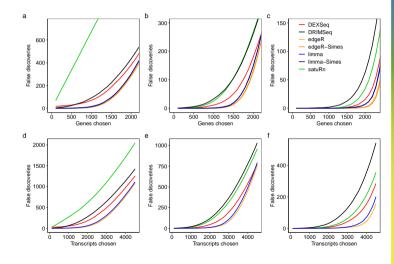
[†]These authors contributed equally to this work.

Offerend in amount swap (CTU) which is through in the salive absolution of insource of insource of the monitor and the amount production of the control of t

Introduction

RNA sequencing (RNA-seg) has revolutionized biomedical research by enabling comprehensive profiling of the transcriptome, providing insights into gone expression regulation across diverse biological contexts. including cancer, immunology, and developmental biology. A common task in RNA-sen data analysis is to identify genomic features that have altered expression levels across conditions, such as treatments. disease status, or genotypes. Differential expression (DE) analysis has traditionally focused on genes as the primary units of expression [11. However, genes often express multiple transcript isoforms (transcripts) via alternative solining, a process in which name evens are injust in different combinations, resulting in distinct messagner RNA products (2, 3, 4). Recent computational and statistical developments now allow fast and accurate detection of differential transcript expression (DTE) IS, 61. Yet, transcriptional changes resulting from alternative splicing rarely occur in isolation, as biological processes often affect multiple everyossed transcripts of a none simultaneously. Examples of such processes include alternative solicing via transprintion start site variation and inform switching via evon skinning (7). These phenomena often occur in the context of cancer, where an oncogene transcript replaces a major transcript due to DNA damage. or eninenomic modifications (8, 9). It is therefore of key interest for himmerical researchers to identify those genes for which any differential splicing event has occurred, resulting in changes in the relative abundance of expressed transcripts for that gene between conditions

Differential splicing can be assessed either at the level of exons via differential exon usage (DEU) or at the level of transcripts (RNA isoforms) via differential transcript usage (DTU). In DEU analyses, RNA-seq reads are different in a sefection or entire for errors, and for events, and



Future work

- Treat analysis testing logFC relative to a threshold
- Sample weights accounting for the variations in sample quality
- New quasi-likelihood pipeline for Methylation analysis

Acknowledgement

Smyth Lab Gordon Smyth Pedro Baldoni Mengbo Li Hannah Coughlan Waruni Abeysekera

Davidson Lab Alex Yan

Chen Lab Andy Chen

Visyader Lab Jane Visvader

Thank you

