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Quasi-likelihood pipeline

■ Mean-variance relationship

var[ygi ] = σ2gµgi + ψgµgi

■ Quasi-dispersion σ2g , accounting for
technical overdispersion

■ Negative binomial dispersion ψg ,
accounting for biological overdispersion

■ Estimation of ψg is global, and we estimate
ψ̂ for all genes using highly expressed genes
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Abstract 

edgeR is an R / Bioconductor software package for differential analyses of sequencing data in the form of read counts for genes or genomic 
features. Over the past 15 years, edgeR has been a popular choice for statistical analysis of data from sequencing technologies such as RNA-seq 
or ChIP-seq. edgeR pioneered the use of the negative binomial distribution to model read count data with replicates and the use of generalized 
linear models to analyz e comple x e xperimental designs. edgeR implements empirical B a y es moderation methods to allow reliable inference 
when the number of replicates is small. This article announces edgeR version 4, which includes new developments across a range of application 
areas. Infrastr uct ure impro v ements include support f or fractional counts, implementation of model fitting in C and a new statistical treatment 
of the quasi-likelihood pipeline that improves accuracy for small counts. The revised package has new functionality for differential methylation 
analysis, differential transcript expression, differential transcript and exon usage, testing relative to a fold-change threshold and pathway analysis. 
This article reviews the statistical framework and computational implementation of edgeR, briefly summarizing all the existing features and 
functionalities but with special attention to new features and those that have not been described previously. 

Gr aphical abstr act 

Introduction 

Next generation sequencing (NGS) has revolutionized 

biomedical research over the past 15–20 years. RNA-seq 

has become the standard technology for profiling gene and 

transcript expression [ 1 , 2 ], while other technologies such as 
ChIP-seq, A T AC-seq, CUT&Tag, bisulfite sequencing (BS-seq) 
and Hi-C allow high-resolution exploration of the molecular 
mechanisms by which expression is regulated [ 3 ]. 
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Application to single-cell RNA-seq data

# Size

> dim(y)

[1] 9996 3302

>

> # Seurat clusters

> cls <- so@meta.data$seurat_clusters

> des <- model.matrix(~ 0 + cls)

>

> # edgeRv3 pipeline

> system.time(y1 <- estimateDisp(y, des, tagwise = FALSE))

user system elapsed

302.15 3.16 305.91

> system.time(fit1 <- glmQLFit(y1, des, legacy = TRUE))

user system elapsed

19.36 0.32 19.74

> # edgeRv4 pipeline

> system.time(fit0 <- glmQLFit(y, des, legacy = FALSE))

user system elapsed

76.78 0.60 77.56
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Adjusted deviance statistics
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Highly variable gene (HVG) selection

■ Null hypothesis: a single population
assumption

■ Under null hypothesis, the variance is

var[ygi ] = σ2
gµgi + ψgµ

2
gi

■ Assume σ2
g = σ2 are the same for all genes

■ Biological variation is measured by ψ̂g

■ HVGs are those genes with large ψ̂g

ψ̂g > ψ̂

■ The HVGs can be classified into two categories

■ Null hypothesis is accepted but ψ̂g is large

■ Null hypothesis is rejected that µgi varies and

results in large ψ̂g

■ edgeRv4 pipeline does not estimate ψ̂g

■ edgeRv4 pipeline does estimate σ̂2
g and σ̂2

■ edgeRv4 performs goodness of fit test

σ̂2
g > σ̂2 ≈ ψ̂g > ψ̂

by adjusted deviance statistics
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Results of selected HVGs
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Examples of selected HVGs
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Prior estimation of empirical Bayes process

■ Suppose we have σ̂2
g ∼ s20 × Fd0,dg The

problem is to estimate s20 , d0.

■ (Smyth 2004) Moment estimators on s20
and d0.

■ (Sartor et al., 2006) Prior trend on s20
using splines.

■ (Phipson et al., 2016) Robust estimators
on s20 and d0.

■ Two major challenges for edgeRv4 QL method
using adjusted deviance statistics

■ dg ,adj is not a constant, and may vary a lot.

■ Many dg ,adj can be small.

■ A two-steps method is proposed to improve
empirical Bayes hyperparameter estimation

■ It is implemented in fitDistUnequalDF1() in limma
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Prior estimation of empirical Bayes process

* Null simulation for DTE (only filter zeros), edgeR 4.2 fails to control FDR (df.prior = Inf)
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Marker gene selection

■ Marker genes are used to identify clusters with a positive logFC

■ Cluster specific is preferred, one gene one cluster

■ It can be a marker gene set, and the combination specifies cluster

■ Assume clusters are well defined, edgeR performs one vs the average of others test

■ For one sample, edgeR can perform on the single-cell level

■ For multiple samples, pseudo-bulk approach is recommended
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Marker gene selection

> # contrast matrix

> contr.matrix <- matrix(-1/4,5,5)

> diag(contr.matrix) <- 1

> contr.matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00 -0.25 -0.25 -0.25 -0.25

[2,] -0.25 1.00 -0.25 -0.25 -0.25

[3,] -0.25 -0.25 1.00 -0.25 -0.25

[4,] -0.25 -0.25 -0.25 1.00 -0.25

[5,] -0.25 -0.25 -0.25 -0.25 1.00

>

> # Test for cluster 2 (LP cells)

> qlf <- glmQLFTest(fit0, contrast = contr.matrix[,3])

> topTags(qlf)[,-(1:4)]

Coefficient: -0.25*cls0 -0.25*cls1 1*cls2 -0.25*cls3 -0.25*cls4

logFC logCPM F PValue FDR

Spp1 5.995375 13.90512 3207.176 0.000000e+00 0.000000e+00

Trf 5.297083 14.00792 3675.661 0.000000e+00 0.000000e+00

Csn3 5.194536 11.68842 2828.526 0.000000e+00 0.000000e+00

Plet1 4.371423 12.03224 3521.563 0.000000e+00 0.000000e+00

Cd14 4.014644 10.90419 2389.327 0.000000e+00 0.000000e+00

Lcn2 3.531909 11.76725 2493.848 0.000000e+00 0.000000e+00

Mfge8 3.517283 11.75730 2775.851 0.000000e+00 0.000000e+00

Cst3 3.089129 11.46859 2020.506 0.000000e+00 0.000000e+00

Mgst1 2.565137 11.32096 1751.716 0.000000e+00 0.000000e+00

Clu 2.926397 11.26094 1741.443 7.674257e-318 7.671188e-315

■ p-values are not reliable because of the
inter-correlation among cells

■ Rank of genes is reasonable so we can
choose top DE genes as potential marker
genes

■ Top DE genes may not be cluster specific

■ For logFC cutoff, a treat-style method is
recommended
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differential splicing (differential transcript usage)

Dividing out quantification uncertainty enables assessment of
differential transcript usage with limma and edgeR

Pedro L. Baldoni1,2,†, Lizhong Chen1,2,†, Mengbo Li1,2, Yunshun Chen1,2,3, and Gordon K. Smyth1,2,*

1Bioinformatics and Computational Biology Division, WEHI, Parkville, VIC 3052, Australia, 2Department of
Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia, 3ACRF Cancer Biology and
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†These authors contributed equally to this work.
*To whom correspondence should be addressed. Tel: +61 3 9345 2555; Fax: +61 3 9347 0852; Email:
smyth@wehi.edu.au

Abstract

Differential transcript usage (DTU) refers to changes in the relative abundance of transcript isoforms of the
same gene between experimental conditions, even when the total expression of the gene doesn’t change.
DTU analysis requires the quantification of individual isoforms from RNA-seq data, which has a high level of
uncertainty due to transcript overlap and read-to-transcript ambiguity (RTA). Popular DTU analysis methods
do not directly account for the RTA overdispersion within their statistical frameworks, leading to reduced
statistical power or poor error rate control, particularly in scenarios with small sample sizes. This article
presents limma and edgeR analysis pipelines that account for RTA during DTU assessment. Leveraging
recent advancements in the limma and edgeR Bioconductor packages, we propose DTU analysis pipelines
optimized for small and large datasets with a unified interface via the diffSplice function. The pipelines make
use of divided counts to remove RTA-induced dispersion from transcript isoform counts and account for the
sparsity in transcript-level counts. Simulations and analysis of real data from mouse mammary epithelial
cells demonstrate that the diffSplice pipelines provide greater power, improved efficiency, and improved
FDR control compared to existing specialized DTU methods.

Introduction

RNA sequencing (RNA-seq) has revolutionized biomedical research by enabling comprehensive profiling
of the transcriptome, providing insights into gene expression regulation across diverse biological contexts,
including cancer, immunology, and developmental biology. A common task in RNA-seq data analysis is
to identify genomic features that have altered expression levels across conditions, such as treatments,
disease status, or genotypes. Differential expression (DE) analysis has traditionally focused on genes as
the primary units of expression [1]. However, genes often express multiple transcript isoforms (transcripts)
via alternative splicing, a process in which gene exons are joined in different combinations, resulting in
distinct messenger RNA products [2, 3, 4]. Recent computational and statistical developments now allow
fast and accurate detection of differential transcript expression (DTE) [5, 6]. Yet, transcriptional changes
resulting from alternative splicing rarely occur in isolation, as biological processes often affect multiple
expressed transcripts of a gene simultaneously. Examples of such processes include alternative splicing
via transcription start site variation and isoform switching via exon skipping [7]. These phenomena often
occur in the context of cancer, where an oncogene transcript replaces a major transcript due to DNA damage
or epigenomic modifications [8, 9]. It is therefore of key interest for biomedical researchers to identify those
genes for which any differential splicing event has occurred, resulting in changes in the relative abundance
of expressed transcripts for that gene between conditions.

Differential splicing can be assessed either at the level of exons via differential exon usage (DEU) or at
the level of transcripts (RNA isoforms) via differential transcript usage (DTU). In DEU analyses, RNA-seq
reads are aligned to a reference genome with a splice-aware aligner, reads are counted for exons, and
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Future work

■ Treat analysis - testing logFC relative to a threshold

■ Sample weights - accounting for the variations in sample quality

■ New quasi-likelihood pipeline for Methylation analysis
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